Author:
Bhagwat Radhika,Dandawate Yogesh
Abstract
Plant diseases cause major yield and economic losses. To detect plant disease at early stages, selecting appropriate techniques is imperative as it affects the cost, diagnosis time, and accuracy. This research gives a comprehensive review of various plant disease detection methods based on the images used and processing algorithms applied. It systematically analyzes various traditional machine learning and deep learning algorithms used for processing visible and spectral range images, and comparatively evaluates the work done in literature in terms of datasets used, various image processing techniques employed, models utilized, and efficiency achieved. The study discusses the benefits and restrictions of each method along with the challenges to be addressed for rapid and accurate plant disease detection. Results show that for plant disease detection, deep learning outperforms traditional machine learning algorithms while visible range images are more widely used compared to spectral images.
Publisher
Taiwan Association of Engineering and Technology Innovation
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering
Reference58 articles.
1. “Agriculture in India: Information about Indian Agriculture & Its Importance,” https://www.ibef.org/industry/agriculture-india.aspx, July 28, 2021.
2. J. G. A. Barbedo, “Digital Image Processing Techniques for Detecting, Quantifying and Classifying Plant Diseases,” SpringerPlus, vol. 2, no. 1, 660, December 2013.
3. M. Sharif, M. A. Khan, Z. Iqbal, M. F. Azam, M. I. U. Lali, and M. Y. Javed, “Detection and Classification of Citrus Diseases in Agriculture Based on Optimized Weighted Segmentation and Feature Selection,” Computers and Electronics in Agriculture, vol. 150, pp. 220-234, July 2018.
4. M. G. Selvaraj, A.Vergara, H. Ruiz, N. Safari, S. Elayabalan, W. Ocimati, et al., “AI-Powered Banana Diseases and Pest Detection,” Plant Methods, vol. 15, no. 1, 92, December 2019.
5. H. Ali, M. I. Lali, M. Z. Nawaz, M. Sharif, and B. A. Saleem, “Symptom Based Automated Detection of Citrus Diseases Using Color Histogram and Textural Descriptors,” Computers and Electronics in Agriculture, vol. 138, pp. 92-104, May 2017.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献