A Framework for Crop Disease Detection Using Feature Fusion Method

Author:

Bhagwat Radhika,Dandawate Yogesh

Abstract

Crop disease detection methods vary from traditional machine learning, which uses Hand-Crafted Features (HCF) to the current deep learning techniques that utilize deep features. In this study, a hybrid framework is designed for crop disease detection using feature fusion. Convolutional Neural Network (CNN) is used for high level features that are fused with HCF. Cepstral coefficients of RGB images are presented as one of the features along with the other popular HCF. The proposed hybrid model is tested on the whole leaf images and also on the image patches which have individual lesions. The experimental results give an enhanced performance with a classification accuracy of 99.93% for the whole leaf images and 99.74% for the images with individual lesions. The proposed model also shows a significant improvement in comparison to the state-of-art techniques. The improved results show the prominence of feature fusion and establish cepstral coefficients as a pertinent feature for crop disease detection.

Publisher

Taiwan Association of Engineering and Technology Innovation

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plant Disease Detection using Feature Fusion;2024 6th International Conference on Energy, Power and Environment (ICEPE);2024-06-20

2. Cross-comparative review of Machine learning for plant disease detection: apple, cassava, cotton and potato plants;Artificial Intelligence in Agriculture;2024-06

3. Cross-Dataset Generalization in -Based Plant Disease Recognition;2024 2nd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA);2024-03-15

4. BAT Algorithm-Based Multi-Class Crop Leaf Disease Prediction Bootstrap Model;Proceedings of Engineering and Technology Innovation;2024-02-29

5. Development of the Abnormal Tension Pattern Recognition Module for Twisted Yarn Based on Deep Learning Edge Computing;International Journal of Engineering and Technology Innovation;2023-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3