Numerical Study of Vortex Flow in a Classifier with Coaxial Tubes

Author:

Zinurov Vadim,Kharkov Vitaly,Pankratov Evgeny,Dmitriev Andrey

Abstract

Centrifugal air classifiers are one of the most used separation devices in particle technology. The study aims to obtain a detailed description of the bulk material classification mechanism in the developed centrifugal classifier. The classifier design and the mechanism of the stable vortex structure formation in the inter-tube space of the device are described. Velocities within and between the vortices are studied to identify regions with inverse flows, which serve as transport channels for particles. The computational fluid dynamics modeling results indicate three channels with negative or near-zero axial velocities: between the vortices, near the outer wall of the internal tube, and the inner wall of the external tube. The selectivity of the device decreases when transport channels are disrupted due to flow mixing, which is caused by the height shifting of the vortex centers.

Publisher

Taiwan Association of Engineering and Technology Innovation

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation in Complex Symmetrical Modes of Electrical Power System;2023 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM);2023-05-15

2. Vortex Structural Stabilization in a Multi-Vortex Separator for Trapping Particles from Natural Gas;Chemical and Petroleum Engineering;2023-05

3. Effect of slot height on efficiency of gas-solid multivortex separator with coaxial tubes;II INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE “TECHNOLOGIES, MATERIALS SCIENCE AND ENGINEERING”;2023

4. Numerical study of particles removal from dusty gas in separation device with straight arc-shaped elements;E3S Web of Conferences;2023

5. Effect of arc element row arrangement on separator efficiency;E3S Web of Conferences;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3