Author:
Ramalingam Senthil ,Arvind Chezian ,Zackir Hussain Ajmal Arsath
Abstract
This work aims to compare the cavity surface contour’s thermal performance to that of the solar absorber’s plain surface contour for Scheffler type parabolic dish collectors. The absorber is tested for the temperature range up to 600°C without working fluid and 180°C with the working fluid. The modified absorber surface's thermal performance is compared with the flat surface absorber with and without heat transfer fluid. The peak temperature reached by the surface modified absorber (534°C) is about 8.6% more than that of the unmodified absorber (492°C) during an outdoor test without fluid. The energy efficiency of cavity surface absorber and plain surface absorber are 67.65% and 61.84%, respectively. The contoured cavity surface produces a more uniform temperature distribution and a higher heat absorption rate than the plain surface. The results are beneficial to the design of high-temperature solar absorbers for concentrated solar collectors.
Publisher
Taiwan Association of Engineering and Technology Innovation
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering
Reference30 articles.
1. S. A. Sakhaei and M. S. Valipour, “Performance Enhancement Analysis of the Flat Plate Collectors: A Comprehensive Review,” Renewable and Sustainable Energy Reviews, vol. 102, pp. 186-204, March 2019.
2. P. K. Pathak, P. Chandra, and G. Raj, “Comparative Analysis of Modified and Convectional Dual Purpose Solar Collector: Energy and Exergy Analysis,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp. 1-17, November 2019.
3. S. Luque, G. Menéndez, M. Roccabruna, J. González-Aguilar, L. Crema, and M. Romero, “Exploiting Volumetric Effects in Novel Additively Manufactured Open Solar Receivers,” Solar Energy, vol. 174, pp. 342-351, November 2018.
4. S. R. Atchuta, S. Sakthivel, and H. C. Barshilia, “Nickel Doped Cobaltite Spinel as a Solar Selective Absorber Coating for Efficient Photothermal Conversion with a Low Thermal Radiative Loss at High Operating Temperatures,” Solar Energy Materials and Solar Cells, vol. 200, article no. 109917, September 2019.
5. M. R. Assari, H. B. Tabrizi, I. Jafari, and E. Najafpour, “An Energy and Exergy Analysis of Water and Air with Different Passage in a Solar Collector,” Energy Sources Part A: Recovery, Utilization, and Environmental Effects, vol. 36, no. 7, pp. 747-754, February 2014.