Growth and organotypic branching of lung-specific microvascular cells on 2D and in 3D lung-derived matrices

Author:

Özkan Sena Nur1ORCID,Öztürk Ece1ORCID

Affiliation:

1. KOC UNIVERSITY

Abstract

Tissue-specific endothelial cells have vital roles in maintenance and functioning of native tissues with constant reciprocal crosstalk with resident cells. Three-dimensional (3D) physio-mimetic in vitro models which incorporate lung-specific microvasculature are needed to model lung-related diseases which involve modulation of endothelial cell behavior like cancer. In this study, we investigated the growth kinetics, morphological changes and responses to biological cues of lung microvasculature on two-dimensional (2D) and in lung matrix-derived 3D hydrogels. HUVEC and HULEC-5a cells were cultured on 2D and compared for their growth, morphologies, and responses to varying growth medium formulations. Brightfield and immunofluorescence imaging was performed to assess differences in morphology. For 3D cultures, native bovine lungs were decellularized, lyophilized, solubilized, and reconstituted into hydrogel form in which endothelial cells were embedded. Cell growth and organotypic branching was monitored in 3D hydrogels in the presence of varying biological cues including lung cancer cell secretome. HUVEC and HULEC-5a cells demonstrated comparable growth and morphology on 2D. However, in 3D lung-derived ECM hydrogels, tissue-specific HULEC-5a cells exhibited much better adaptation to their microenvironment, characterized by enhanced organotypic branching and longer branches. HULEC-5a growth was responsive to lung cancer cell-conditioned medium in both 2D and 3D conditions. In 3D, the concentration of ECM ligand significantly affected cell growth in long-term culture where molecular crowding had an inhibitory role. Our data reveals that HULEC-5a cells offer a reliable alternative to frequently pursued HUVECs with comparable growth and morphology. Due to their intrinsic program for cellular crosstalk with resident cells, the use of tissue-specific endothelium constitutes a vital aspect for modeling physiological and pathological processes. Furthermore, our study is the first demonstration of the synergy between lung-specific microvasculature with lung-specific ECM within a 3D in vitro model.

Funder

TÜBİTAK

Publisher

Frontiers in Life Sciences and Related Technologies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3