Soil and permafrost in the Ross Sea region of Antarctica: stable or dynamic?

Author:

Balks M. R.,O’Neill T. A.

Abstract

Soils in the Ross Sea Region of Antarctica generally comprise a surface desert pavement and a seasonally thawed active layer over permafrost. Most soils are formed on regolith such as glacial till or colluvium. Mean annual air temperatures range from -18°C to -24°C with low precipitation. The active layer ranges in depth from minimal in higher altitude, colder sites, to near 1 m deep at warmer coastal sites in the northern part of the region.  Underlying permafrost may be ice-cemented, or dry with no ice cement. In some areas ice-cored moraine occurs where there is a large body of ice within the subsoil permafrost. Two examples of active gully/fan -forming events, one at Cape Evans and one at Lake Vanda are described. At the Cape Evans event water from a small lake thawed and came into contact with the ice in the underlying patterned ground ice-wedge causing the ice-wedge to melt and extensive gully erosion to occur. A fan-building event near Lake Vanda in the Wright Valley resulted in erosive and depositional features covering a horizontal distance of about 3 km and an altitudinal range of about 1400 m. Such occasional events, can be attributed to warmer than average summers, and were first described in the Ross Sea Region in the 1970s. The Cape Evans and Lake Vanda events are examples of active, rapid, landscape processes and show that landscapes are not as static as is often assumed.

Publisher

Universidad de la Rioja

Subject

Earth and Planetary Sciences (miscellaneous),Environmental Science (miscellaneous),Geography, Planning and Development

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3