Observaciones del manto de nieve durante una circunnavegación del casquete de hielo de Groenlandia (primavera de 2014)

Author:

López Moreno J. I.,Olivera-Marañón M.,Zabalza J.,De Larramendi R. H.

Abstract

We report the characteristics of the Greenland ice sheet snowpack, based on data collected during the first wind-propelled circumnavigation of the ice sheet, undertaken in spring 2014. The dataset included snow depth measurements made in 100 m2 plots, and data on the snow bulk density and snowpack temperature at 1 m depth at 25 sites distributed along the 4301 km route traveled during the 49 days of the circumnavigation. In addition, eight snow pits of 1 m depth were dug to measure the snow temperature and density at 10 cm intervals in the upper layer of the snowpack. All this information may help to better understand snow characteristics on this remote area, and provide data to validate and calibrate atmospheric and cryospheric models.Snow depths exceeding 4 m were measured in the snow accumulation area, but in many cases the presence of an ice layer prevented penetration of the snow probe below 70 cm depth. This ice layer may be associated with the melting event that occurred in July 2012, and affected 98% of the ice sheet. Beyond the main snow accumulation zone, very constant snow depth values of approximately 1.5 m were measured. The snow temperature at 1 m depth generally ranged from –20°C to –10°C, and was highly correlated with the average atmospheric temperature during the 15 days prior to the snow temperature measurements. The snow bulk density was relatively homogeneous at the majority of sampling sites, ranging from 320 to 390 kg m–3. The snow temperature and density profiles measured in the snow pits indicated that the snowpack became progressively colder from the surface to 1 m depth. The temperature gradient measured in the snow pits was particularly steep (shallow) at the warmest (coldest) sampling sites. The snow density was characterized by denser snow at 60–80 cm depth, coinciding with the depth of the ice layer identified when depth was measured. A dense layer was also found close to the surface at the warmest snow pit sites, and it is likely that this corresponds to a more recent snow melt event.

Publisher

Universidad de la Rioja

Subject

Earth and Planetary Sciences (miscellaneous),Environmental Science (miscellaneous),Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3