Three decades of remote sensing analysis of forest decline related to climate change

Author:

Gallardo-Salazar José LuisORCID,Sáenz-Romero CuauhtémocORCID,Lindig-Cisneros RobertoORCID,López-Toledo LeonelORCID,Blanco-García José A.ORCID,Endara-Agramont Ángel R.ORCID

Abstract

Climate change is predicted to lead to increasingly intense and hotter droughts, causing physiological weakness followed by forest decline in many regions of the world. Long- and short-range remote sensing (satellites and unmanned aerial vehicles, commonly called drones) can sense drought-induced changes in vegetation. Although several studies have addressed forest decline events, none have analyzed the forest decline attributable to climate change using remote sensing in a concise manner. A bibliometric analysis was carried out to characterize the scientific production reported in the Web of Science repository. The search descriptors were a combination of keywords related to forest decline and remote sensing. The results showed 278 articles published between 1989 and 2021 in 92 journals, with an average annual increase of 31%. A total of 29 nodes and 220 scientific collaboration links were located, mainly led by researchers from USA, Germany and China. Keyword analysis using World-TreeMap reflected the association of different key forest decline phenomena such as drought stress and climate change. Although the use of satellite information to study and understand forest decline has been reported for just over three decades, the most notable feature of the present research was the limited role of drones with only 5 studies. This reveals an area of opportunity to take advantage of the main strengths of drones, i.e., spatial and temporal resolution, low cost compared to manned flights, and centimeter accuracy. Therefore, it is strongly recommended to increase studies to improve the use of multispectral sensors, thermal and LiDAR technology for long-term monitoring of forest decline related to climate change.

Publisher

Universidad de la Rioja

Subject

Earth and Planetary Sciences (miscellaneous),Environmental Science (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3