Evaluation of the seismic response of a reinforced concrete footing with stub column to increasing peak ground acceleration using pseudo-dynamic experimentation

Author:

Abstract

The pseudo-dynamic experimentation technique was investigated to evaluate the damage occurring in a reinforced concrete footing with stub column due to the overall response of a linear elastic two-storey, two-bay moment-resisting steel frame structure that is subjected to an earthquake excitation with increasing peak ground acceleration. The implicit Newmark's method with static condensation was utilised in the present study to solve the governing equation of motion of the multi-degree-of-freedom system. Five pseudo-dynamic experiments were performed by scaling the El Centro ground motion record, which occurred in California on 18 May 1940, to produce peak ground accelerations that ranged between 0.34 g and 2 g. All the laboratory experiments were undertaken under a constant axial load for the duration of the applied earthquake excitation, and utilised Rayleigh damping to model the energy loss within the overall structure. The pseudo-dynamic method provides a reliable method to relate damage suffered by the stub column due to the overall structure's response to the applied earthquake excitation. The method enables the structural capacity and failure mechanisms of the reinforced concrete stub column to be observed in relation to the seismic demand. The hysteretic response of the stub columns and energy dissipation characteristics were determined, and it was shown that the yield strength of the longitudinal reinforcement within the stub column has a significant impact on the maximum shear capacity and damage incurred by the stub column. The damage is more pronounced with an increase in the number of cycles of vibration, particularly at displacements that exceed the yield strength of the reinforcement. An increase in the hysteretic energy dissipated by the reinforced concrete stub column results in a concomitant increase in the observed damage to the stub column in the form of concrete cracking, reinforcement yielding and spalling of the concrete.

Publisher

Academy of Science of South Africa

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3