Development of a design and implementation process for the integration of hydrokinetic devices into existing infrastructure in South Africa

Author:

Niebuhr CM,Van Dijk M,Bhagwan JN

Abstract

In South Africa there is currently no notable use of modern small-scale hydrokinetic (HK) energy systems, mainly due to formerly low-cost coal-powered electricity. This renewable energy option makes use of the kinetic energy from flowing water, rather than potential energy, which is more often used in conventional hydropower. Updated refined versions of this technology are now being investigated and manufactured due to the global drive towards reducing carbon emissions and increasing energy efficiency. These modular units allow for installation of HK turbines into existing water infrastructure with very little civil works. The study’s objective was to develop a simplified design and implementation process for HK devices within the South African legislative and regulatory environment. Approximately 66% of South Africa’s water supply is used by the agricultural sector with more than 6 500 km of canal systems running through many areas which could benefit from alternative energy sources. The recent electricity crisis in the country allowed for problem resolution through funding opportunities and thereby an introduction of an innovative and sustainable technology to provide renewable electricity where otherwise not feasible. A pilot HK project was implemented in an applicable section on the Boegoeberg irrigation canal in the Northern Cape Province and tested for optimum functionality and correct application. This process allowed evolution of a development process for the implementation of HK devices in existing water infrastructure.

Publisher

Academy of Science of South Africa

Subject

Management, Monitoring, Policy and Law,Waste Management and Disposal,Water Science and Technology,Applied Microbiology and Biotechnology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3