Wind power variability during the passage of cold fronts across South Africa

Author:

Dalton AmarisORCID,Bekker BernardORCID,Kruger AndriesORCID

Abstract

Wind is a naturally variable resource that fluctuates across timescales and, by the same token, the electricity generated by wind also fluctuates across timescales. At longer timescales, i.e., hours to days, synoptic-scale weather systems, notably cold fronts during South African winter months, are important instigators of strong wind conditions and variability in the wind resource. The variability of wind power production from aggregates of geographically disperse turbines for the passage of individual cold fronts over South Africa was simulated in this study. When considering wind power variability caused by synoptic-scale weather patterns, specifically cold fronts, the timescale at which analysis is conducted was found to be of great importance, as relatively small mean absolute power ramps at a ten-minute temporal resolution, order of 2-4% of simulated capacity, can result in large variations of total wind power production (at the order of 32–93% of simulated capacity) over a period of three to four days as a cold front passes. It was found that when the aggregate consists of a larger and more geographically dispersed set of turbines, as opposed to a smaller set of turbines specifically located within cold-front dominated high wind areas, variability and the mean absolute ramp rates decrease (or gets ‘smoothed’) across the timescales considered. It was finally shown that the majority of large simulated wind power ramp events observed during the winter months, especially at longer timescales, are caused by the passage of cold fronts. 

Publisher

Academy of Science of South Africa

Subject

General Energy,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3