Passive cooling for thermal comfort in informal housing

Author:

Kimemia DavidORCID,Van Niekerk AshleyORCID,Annegarn HaroldORCID,Seedat MohamedORCID

Abstract

Energy-poor households in Africa’s burgeoning urban informal settlements are especially likely to suffer from heatwaves because of thermally inefficient dwellings and lack of affordable cooling options. This study utilised a controlled experiment to assess the effectiveness of passive cooling through specially formulated paints (cool coatings) in standard informal structures. The test structures were built to simulate typical shack dwellings in South Africa’s urban informal settlements. Results showed that the mean daily maximum temperatures of the coated structure were up to 4.3 °C lower than those in the uncoated structure. The same cooling trend was observed for the minimum daily temperatures, which were lower by an average of 2.2 °C. Besides, the annual frequency of maximum temperature exceedances beyond the critical heat stroke value of 40 °C dropped from 19% for the uncoated structure to 1% for the coated structure. These temperature differences were found to be statistically and subjectively significant, implying that cool coatings may be effective in promoting thermal comfort and climate resilience in poor urban communities. It is recommended that governmental authorities and relevant role players invest in the production and assisted application of cool coatings in urban informal settlements. The interventions promise hope of reduced energy burden on poor households and could be implemented in parallel with ongoing efforts focused on the design and implementation of low-cost, durable and thermally comfortable houses for indigent communities. Ultimately, the endeavours could be a potential policy change to assist in expanding poor households’ access to alternative and green energy resources.

Publisher

Academy of Science of South Africa

Subject

General Energy,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3