Proposed approaches to systematic planning of research and monitoring to support a South African inland fisheries policy

Author:

S Hugo ORCID,OLF Weyl ORCID

Abstract

A South African inland fisheries policy will depend on a reliable long-term supply of social-ecological data covering freshwater fisheries at a broad geographic scale. Approaches to systematic planning of research and monitoring are demonstrated herein, based on a fishery-independent gillnet dataset covering 44 dams, and geographic information system maps of monthly and annual climate variables, human land use, and road access in a 5 km zone around 442 dams. Generalised linear mixed models were used to determine the covariates of gillnet catch per unit effort. Such covariates are required for a model-based process to select a subset of state-owned dams for a long-term fishery survey programme. The models indicated a monthly climate influence on catch per unit effort and climatic drivers of fish species distributions. However, unexplained variation is overwhelming and precludes a model-based survey design process. Non-hierarchical clustering of 442 dams was then done based on annual climate and human land use variables around dams. The resulting clusters of dams with shared climate and land use characteristics indicates the types of dams that should be selected for monitoring to represent the full range of climate and land use characteristics. Surrounding land use could indicate the socioeconomic characteristics of fisheries, for example, dams that may support subsistence-based communities that require increased research effort. Finally, although primary catchments could be useful for organising national-scale management, land use cover in the 5 km zone around dams varied widely within the respective primary catchments. Beyond these proposed approaches to plan research, this study also reveals various data deficiencies and recommends additional future studies on other possible methods for systematic research planning.

Publisher

Academy of Science of South Africa

Subject

Management, Monitoring, Policy and Law,Waste Management and Disposal,Water Science and Technology,Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3