A GIS-based approach for identifying suitable sites for rainwater harvesting technologies in Kasungu District, Malawi

Author:

F Nyirenda ,A Mhizha ,W Gumindoga ,A Shumba

Abstract

A GIS-based approach for identifying suitable sites for rainwater harvesting (RWH) technologies was developed and applied in Kasungu District, Malawi. Data were obtained from reports, socio-economic survey documents of the area and maps. Field surveys were conducted in the villages of Chipala Extension Planning Area (EPA), in order to identify and evaluate the performance of existing RWH interventions, and determine factors for locating suitable areas for RWH. Observed soil moisture content was used to assess the water retention performance of the prevalent RWH technologies: contour tied ridging and soil mulching. A GIS-based Soil Conservation Service Curve Number (SCS-CN) method was used to map runoff potential for areas with RWH technologies, using physical factors of rainfall, land use, soil type and slope to estimate runoff potential. This was then integrated in a GIS database, with social-economic factors in the form of household income level and environmental factors, including impacts of implementing RWH, to determine the suitability of land areas for RWH in Kasungu District. One way analysis of variance (ANOVA) was used to test the impact of identified technologies by comparing the moisture content measurements for each of the identified technologies at 5% level of significance. The ANOVA results showed a statistically significant difference in the moisture measurements for the three technologies identified (P < 0.05). The RWH suitability map for the study area showed that 0.2% of the area considered had very high potential, 33.5% high, 55.9% moderate, 10.1% marginal and 0.3% not suitable for in-field RWH. The model was verified by locating the existing RWH on the suitability map obtained from GIS: 81% of RWH were located in the highly and moderately suitable areas whilst only 13% were located in areas of low suitability. Hence the developed model can reliably be used to predict potential areas for RWH.

Publisher

Academy of Science of South Africa

Subject

Management, Monitoring, Policy and Law,Waste Management and Disposal,Water Science and Technology,Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3