Fabrication and performance evaluation of tannin iron complex (TA-FeIII/PES) UF membrane in treatment of BTEX wastewater

Author:

Takalani Makhani ,Olawumi O Sadare ,Stephan Wagenaar ,Kapil Moothi ,Richard M Moutloali ,Michael O Daramola

Abstract

Oil exploration generates produced water that is characterized as hazardous and toxic waste. Produced water contains a mixture of various pollutants, including monoaromatic hydrocarbons BTEX (benzene, toluene, ethylbenzene, and xylene), compounds that are carcinogenic even in small concentrations.  In this study, tannin iron complex (TA-FeIII), blended into polyethersulfone (PES) membrane was evaluated for the treatment of BTEX-containing wastewater. The membranes were fabricated using the non-solvent induced phase separation (NIPS) method and loading of the TA-FeIII complex on the membranes varied from 0–0.9 wt%. The fabricated membranes were characterized using various techniques such as scanning electron microscopy (SEM), water contact angle (WCA), Fourier transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM) to check the surface morphology, hydrophilicity, surface functionality and surface roughness of the fabricated membranes, respectively. The TA-FeIII modified membranes showed increased pure water flux from 100 (PES 0) to ∼150 (PES 0.9) L/(m2‧h) at 100 kPa. The performance of the fabricated membranes was tested using 70 mg/L synthetic BTEX solution. Overall BTEX rejection > 70% was achieved at increasing TA-FeIII loadings compared to BTEX rejection < 65% for the pure PES membrane. Rejection of the BTEX compounds was mainly through the size exclusion mechanism. These modified TA-FeIII/PES UF membranes proved to be effective in the treatment of BTEX-containing water, and also have the potential to be applied in oily wastewater treatment. 

Publisher

Academy of Science of South Africa

Subject

Management, Monitoring, Policy and Law,Waste Management and Disposal,Water Science and Technology,Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3