Assessing the performance of techniques for disaggregating daily rainfall in South Africa

Author:

R Ramlall ,JC Smithers

Abstract

Design flood estimation (DFE) methods are used to limit the risk of failure and ensure the safe design of hydrological and related infrastructure, and to inform water resources management. In order to improve DFE methods which are based on event or continuous simulation rainfall–runoff models, it is generally necessary to use sub-daily rainfall data. However, sub-daily rainfall gauges are relatively sparse and have shorter record lengths than daily rainfall gauges in South Africa. Rainfall temporal disaggregation (RTD) techniques can be used to produce finer resolution data from coarser resolution daily rainfall data. Several RTD approaches have been developed and are used in South Africa. However, there is a need to review and assess the performance of the available RTD methods. This paper contains an overview of selected RTD approaches and the performance of the methods at selected sites in South Africa, for disaggregating daily rainfall into 15-min intervals. Temporal distributions of rainfall were represented by dimensionless Huff curves, which served as the basis for comparison of observed and disaggregated rainfall. In a pilot study it was found that the SCS-SA (Soil Conservation Service model South Africa) distributions and the Knoesen model approaches performed considerably better than the other approaches. The RTD approaches were further assessed using data from 14 additional rainfall stations. For the additional stations, the Knoesen model and SCS-SA disaggregated rainfall generally provided the most realistic temporal distributions.

Publisher

Academy of Science of South Africa

Subject

Management, Monitoring, Policy and Law,Waste Management and Disposal,Water Science and Technology,Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3