Environmental life cycle, carbon footprint and comparative economic assessment of rainwater harvesting systems in schools – a South African case study

Author:

Praval Maharaj ,Elena Friedrich

Abstract

Rainwater harvesting (RWH) provides a unique opportunity for water conservation. This research aimed to assess the performance of two types of RWH systems (gravity and pump-driven) at a local public school in replacing non-potable water for toilet flushing. The volume of harvested water, efficiency to meet demand, expenses involved and associated environmental burdens were key criteria of performance. Economic considerations included capital costs and return periods, while the environmental aspects encompassed simplified life cycle assessments (LCAs) as well as specific carbon footprints. The gravity-fed system supplied 452.5 kL/annum and covered 31.8% of the demand for flushing water for toilets for the school investigated. The pumped system provided 476.8 kL/annum representing 33.5% of the demand.  Together they would be able to supply 65.3% of the demand. The catchment area of these two systems differed and there was no overlap. As expected, the gravity-fed system outperformed the pumped system, both economically and environmentally, because no energy for pumping was needed. In terms of costs, the difference was small, and the payback periods of both systems were similar.  However, environmentally, the LCA scores for the pumped system were an order of magnitude higher for all 18 impact categories considered. Carbon footprints showed that in the construction stage both systems have similar footprints. For the operation stage, the comparison was extended, as there were higher energy requirements for the pumped system (about 4 times higher than those from the provision of municipal potable water), but in the same range or lower when compared with other alternative sources of water like groundwater abstraction, recycling of municipal water and desalination. The gravity-fed system required no energy for pumping. This study shows how trade-offs in assessing the overall performance of RWH systems can be considered, leading to better decision making.

Publisher

Academy of Science of South Africa

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3