AquaSens: exploring the use of 16S rRNA next-generation sequencing to determine bacterial composition of various water matrices

Author:

Nisreen Hoosain ,Jeanne Korsman ,Peter O Kimathi ,Paidamoyo Kachambwa ,Rembu Magoba ,Shane L Murray

Abstract

Access to clean water, one of the United Nation’s Sustainable Development Goals, is challenged by an increase in the presence of emerging microbial and other contaminants due to urbanization, among other factors. Traditionally, the presence of indicator microorganisms is determined using culturing methods. However, these classical methods cannot be used to determine the identities of ‘unknown’ bacteria and is limited to isolating the culturable state of microorganisms. Thus with culturing, the identities of many bacteria, particularly novel or non-culturable, may remain unknown. The use of a DNA-based method, 16S rRNA next-generation sequencing (NGS), can assist with determining the identities of bacterial populations in a water sample. The objective of this 16S rRNA NGS study was to investigate the bacterial community composition and diversity in a range of water sources. Water samples comprising of potable, surface, ground, marine, aquaculture, rain, wetland and swimming bath water matrices were subjected to 16S rRNA NGS using the Illumina 16S rRNA Metagenomics analysis pipeline. Operational taxonomic units were analysed and the identities of bacterial genera determined. In this study, genera of Acinetobacter, Mycobacterium, Pseudomonas, Legionella, Burkholderia, Yersinia, Staphylococcus and Vibrio were spread across the water matrices. Alpha (within sample) and beta (between samples) diversities for each bacterial community within the tested samples were also determined.

Publisher

Academy of Science of South Africa

Subject

Management, Monitoring, Policy and Law,Waste Management and Disposal,Water Science and Technology,Applied Microbiology and Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3