Adsorptive removal of BTEX compounds from wastewater using activated carbon derived from macadamia nut shells

Author:

Kedibone Melaphi ,Olawumi O Sadare ,Geoffrey S Simate ,Stephan Wagenaar ,Kapil Moothi

Abstract

In this study, adsorptive removal of benzene, toluene, ethylbenzene and xylenes (BTEX) from synthetic water using activated carbon adsorbent derived from macadamia nut shells was investigated. The surface functional groups of the synthesized adsorbents were assessed by Fourier transform infrared spectra. The specific surface area, pore size and pore volume at 77 K nitrogen adsorption, surface morphology, and the crystalline structure of the adsorbents were determined using Brunauer-Emmett-Teller, scanning electron microscopy and x-ray diffraction, respectively. Batch adsorption mode was used to evaluate the performance of the activated carbon.  The stock solutions of synthetic wastewater were prepared by dissolving 100 mg/L of each of the BTEX compound into distilled water in a 250 mL volumetric flask. Effect of initial concentration of BTEX compounds, contact time, and mass of adsorbent on the removal of BTEX compounds from the synthetic wastewater was investigated. The macadamia nut shell–derived activated carbon (MAC) proved to be an effective adsorbent for BTEX compounds, with a large surface area of 405.56 m2/g. The exposure time to reach equilibrium for maximum removal of BTEX was observed to be 20 min.  The adsorption capacity of the BTEX compounds by MAC followed the following adsorption order: benzene > toluene > ethylbenzene ˃ xylene.

Publisher

Academy of Science of South Africa

Subject

Management, Monitoring, Policy and Law,Waste Management and Disposal,Water Science and Technology,Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3