Degradation of methyl orange by the Fenton-like reaction of pyrite-activated hydrogen peroxide forming the Fe(III)/Fe(II) cycle

Author:

Wenlong Bi ,Ruojin Du ,Hui Liu ,Peng Fu ,Zhenguo Li

Abstract

In this study, the typical azo dye methyl orange (MO) was degraded by pyrite (FeS2) activated by hydrogen peroxide (H2O2). When [MO] = 0.1 mM, [FeS2] = 2.0 g/L and [H2O2] = 22 mM, 96.4% MO was removed in 120 min and the TOC removal rate was higher than 50%. HO• was the primary radical responsible for MO degradation. In addition, the acid condition promoted the degradation of MO in the FeS2/H2O2 system. MO in tap water and river water was not effectively degraded, whereas acidification could weaken the inhibitory effect on the FeS2/H2O2 system to enable the degradation of MO in tap and river water. The OD600 indicated that the solution was environmentally friendly after the reaction, and three degradation pathways of MO were discussed. In summary, Fe(II) could be dissolved from FeS2, which activated H2O2 to generate Fe(III) and HO•. FeS2 could reduce Fe(III) into Fe(II), thus realizing the Fe(III)/(II) cycle and efficiently activating H2O2 to degrade MO.

Publisher

Academy of Science of South Africa

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3