Comparative life cycle assessment (LCA) of pre-treatment technologies for desalination in South Africa

Author:

W Draper ,T Goga ,E Friedrich

Abstract

In the context of South Africa’s water scarcity, desalination has emerged as a possible solution for coastal areas. However, the quality of the intake water for desalination is often problematic, prompting the need for pre-treatment. The aim of this study was to conduct a comparative environmental life cycle assessment (LCA) on 4 seawater filtration systems intended for the pre-treatment of a reverse osmosis desalination project. These systems were implemented in a pilot trial and are based on modern water treatment technologies, namely, granular filtration (pressure driven and gravity driven), dissolved air flotation (DAF), and ultrafiltration (UF). For all 4 systems, data were collected for both the construction and operation phases, and LCAs were performed, resulting in environmental scores that allow for comparison based on the pre-treatment of 1 kL of seawater of the same quality. The SimaPro LCA tool and the ReCiPe midpoint method were used and environmental scores were calculated for 18 impact categories, including climate change, acidification, toxicity, eutrophication, resource depletion, etc. This methodology also allowed the identification of the highest environmental burdens/scores within each system. The most significant finding is that local electricity consumption is responsible for the greatest proportion of environmental impacts. Thus, the systems consuming more energy for operating equipment such as blowers, pumps, and mixers were found to have the highest environmental burdens. Hence, the DAF system has the highest environmental scores for most impacts, followed by the single-phase gravity filtration system, then the two-phase partial pressure filtration system and finally the UF system. Therefore, focus should shift towards energy optimisation of process units, especially the rotary ones, as well as energy mitigation and recovery strategies. The use of renewable energy for pre-treatment should also be considered locally.

Publisher

Academy of Science of South Africa

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3