Evaluation of the mechanical properties of wood-derived charcoal briquettes for use as a reductant

Author:

Makgobelele N.W.,Mbaya R.K.K.,Bunt J.R.,Leokaoke N.T.,Neomagus H.W.J.P.

Abstract

SYNOPSIS Silicon Smelters consumes more than 80000 t/a of wood-derived charcoal as carbonaceous reductant in the production of silicon metal. More than 10% of this material is discarded as fines (<6 mm) generated due to abrasion during processing. Charcoal fine residues (<650 μm) and polyvinyl alcohol (PVA) binder were used in this study to produce mechanically strong charcoal briquettes for metallurgical application as carbonaceous reductant. The PVA binder was added in mass percentages of 1, 3, and 5 wt% to the charcoal fines. The compressive strength, abrasion resistance index (ARI), drop shatter resistance (SRI), and water resistance index (WRI) were measured as functions of curing for up to 7 days under atmospheric conditions, and the results compared with metallurgical grade coarse charcoal. The ash content of the produced briquettes was found to be high (6.6-8.0%) compared with the coarse charcoal (1-3%). The 3 and 5 wt% PVA-bound briquettes were found to be the strongest, with compressive strengths of 40 and 115 kg/cm2 respectively, with WRI values of 75 and 73% respectively. The produced briquettes were found to have lower ARI and SRI values compared to the coarse charcoal. Future work should include beneficiation of the fine charcoal discards prior to briquetting, and an increase in binder addition to above 6 wt% to improve the ARI and SRIn. Keywords: wood charcoal, fines, briquettes, reductant, polyvinyl alcohol binder, compressive strength, water resistance, curing time.

Publisher

Academy of Science of South Africa

Subject

Materials Chemistry,Metals and Alloys,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3