Abstract
Geotechnical models developed during the planning stages of open pit mines are three-dimensional so as to capture the spatial variation in lithological, structural, hydrogeological, and geomechanical conditions. Geological models that describe the lithological and structural (faulting and folding) characteristics of a deposit are always 3D. Likewise, boreholes and piezometers used to develop geomechanical properties and groundwater models are drilled at spatial offsets across the deposit to understand the lateral and vertical characteristics. Yet when geotechnical analysis is completed, often the three-dimensional geological, hydrogeological, and structural models as well as geometrically complex 3D mine designs for optimizing economic mineral recovery and overburden removal are simplified to two-dimensional sections. In this paper we demonstrate that this simplification can lead to the wrong failure mechanism being identified, analysed, and/or a conservative factor of safety being calculated and hence an over-estimation of slope stability. Through case studies we show how three-dimensional analysis methods are more suited to rock slopes, particularly those with anisotropic material strength, when singularities such as geological faults are present, and nonlinear slope geometry. When the same slopes are analysed in two dimensions, the failure mechanism calculated is often fundamentally incorrect. The case studies further reveal that the factor of safety calculated in three dimensions is not always higher than the two-dimensional factor of safety.
Publisher
Academy of Science of South Africa
Subject
Materials Chemistry,Metals and Alloys,Geotechnical Engineering and Engineering Geology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献