Evaluation of different surface characteristics and mineral grain size in the estimation of rock strength using the Schmidt hammer

Author:

Karaman K.ORCID

Abstract

This study investigated the effect of surface roughness on Schmidt rebound hardness (Rl). Four different test surfaces of rock samples were studied: natural, ground, cut surfaces, and core samples. There was significant variability of standard deviation based on the Rl on the natural surface, which indicated high roughness of the rock surface, whereas surface polishing caused a significant decrease in standard deviation. ISRM and ASTM methods were compared to estimate unconfined compressive strength (UCS) for different testing surfaces. Rl obtained from the cut surface was found to be more reliable than those obtained from other testing surfaces for the prediction of UCS; however, regression and ANOVA analyses revealed that the ISRM method gave a more accurate UCS estimation of rocks with highly rough surfaces. It was also shown that Rl values obtained from a cut surface were significantly higher than those obtained from core samples. Therefore, a comparison between Rl values obtained from core samples and cut surfaces was made based on previous studies. This study statistically showed that estimated UCS values are not statistically significant if Schmidt rebound tests are not performed on similar surfaces. In addition, the mineral grain sizes of the studied rocks, different testing surfaces compared with those in literature, and standard deviation from Rl are evaluated and discussed. The Schmidt hammer technique is a rapid, inexpensive, and straightforward method for estimating UCS for preliminary assessment; however, roughness of the surface should be eliminated if variations are shown in the surface rebound hardness.

Publisher

Academy of Science of South Africa

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3