Contact sorption drying of chromite concentrates

Author:

Snyman C.,le Roux M.ORCID,Campbell Q.P.ORCID,Engelbrecht S.

Abstract

Due to the ultrafine particle size required for effective processing of chromite ores, dewatering of the concentrates presents a challenge. It is not uncommon for the ore to have elevated moisture contents even after dewatering, which must be reduced to required levels of between 8% and 10% by mass for further processing. Contact sorption drying has shown promise in test work on fine coal. This method was used to study the dewatering of chromite on a laboratory scale using 3 mm spherical activated alumina ceramic beads as a sorbent. Three different sorbent-to-chromite mass ratios, namely 0.5:1, 1:1, and 2:1, were tested with different process conditions, including dewatering in a stationary and a rotatingl bed. The experimental work showed that it was possible to achieve the target moistures in less than 10 minutes, irrespective of the sorbent-to-chromite ratio used. Ratios of 1:1 or higher, however, proved to be the best. The sorbent reusability at mass ratios of 1:1 and 2:1 were therefore tested. With a 1:1 mass ratio, the sorbents could be reused for three cycles, while with 2:1 ratio, the number of cycles increased to six. The sorbent-to-chromite mass ratio used had a significant influence on the required contact time and the reusability of the sorbents.

Publisher

Academy of Science of South Africa

Subject

Materials Chemistry,Metals and Alloys,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3