Review of machine learning-based Mineral Resource estimation

Author:

Mahboob M.A.,Celik T.,Genc B.

Abstract

Mineral Resources estimation plays a crucial role in the profitability of the future of mining operations. The conventional geostatistical methods used for grade estimation require expertise, understanding and knowledge of the spatial statistics, resource modelling, geology, mining engineering as well as clean validated data to build accurate block models. However, the geostatistical models are sensitive to changes in data and would have to be rebuilt on newly acquired data with different characteristics, which has proved to be a time-consuming process. Machine learning methods have in recent years been proposed as an alternative to the geostatistical methods to alleviate the problems these might suffer from in Mineral Resource estimation. In this paper, a systematic literature review of machine learning methods used in Mineral Resource estimation is presented. This has been conducted on such studies published during the period 1990 to 2019. The types, performances, and capabilities, of several machine learning methods have been evaluated and compared against each other, and against the conventional geostatistical methods. The results, based on 31 research studies, show that the machine learning-based methods have outperformed the conventional grade estimation modelling methods. The review also shows there is active research on applying machine learning to grade estimation from exploration through to exploitation. Further improvements can be expected if advanced machine learning techniques are to be used.

Publisher

Academy of Science of South Africa

Subject

Materials Chemistry,Metals and Alloys,Geotechnical Engineering and Engineering Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3