Copper slag as a potential source of critical elements - A case study from Tsumeb, Namibia

Author:

Lohmeier S.,Lottermoser B.G.,Schirmer T.,Gallhofer D.

Abstract

SYNOPSIS At a time of resource consumption, it is important to study the chemical composition of mining and metallurgical wastes to prevent the dissipative loss of metals and metalloids from the mining value chain. In particular, the recovery of critical elements from wastes is an option to increase the resources of such materials that are economically significant and have an overall supply risk. In this paper we report on the chemical composition, in particular the critical element content, of granulated slag originating from historical smelting activities in the Tsumeb area, Namibia. Laboratory-based inductively coupled plasma-mass spectrometry (ICP-MS) and X-ray fluorescence (XRF) analyses as well as portable X-ray fluorescence (pXRF) demonstrate that the slags are on average enriched in base metals (Cu 0.7 wt%, Pb 2.7 wt%, Zn 4.7 wt%), trace metals and metalloids (Cd approx. 50 mg/kg, Mo approx. 910 mg/kg) as well as critical elements (As approx. 6300 mg/kg, Bi approx. 3 mg/kg, Co approx. 200 mg/kg, Ga approx. 100 mg/kg, In approx. 9 mg/kg, Sb approx. 470 mg/kg). While metals and metalloids such as As, Mo and Pb can be determined reliably using pXRF instruments, the technique has inherent limitations in evaluating the contents of certain critical elements (Ga, Sb). However, there are positive correlations between the As, Mo, and Pb contents determined by pXRF and the Ga and Sb contents obtained through ICP-MS and XRF. Thus, quantitative pXRF analysis for As, Mo, and Pb allows calculation of Ga and Sb abundances in the slags. This work demonstrates that pXRF analysers are a valuable tool to screen smelting slags for their chemical composition and to predict the likely contents of critical elements. Keywords: base metal slag, portable XRF, critical elements, secondary resource.

Publisher

Academy of Science of South Africa

Subject

Materials Chemistry,Metals and Alloys,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3