Author:
Lohmeier S.,Lottermoser B.G.,Schirmer T.,Gallhofer D.
Abstract
SYNOPSIS At a time of resource consumption, it is important to study the chemical composition of mining and metallurgical wastes to prevent the dissipative loss of metals and metalloids from the mining value chain. In particular, the recovery of critical elements from wastes is an option to increase the resources of such materials that are economically significant and have an overall supply risk. In this paper we report on the chemical composition, in particular the critical element content, of granulated slag originating from historical smelting activities in the Tsumeb area, Namibia. Laboratory-based inductively coupled plasma-mass spectrometry (ICP-MS) and X-ray fluorescence (XRF) analyses as well as portable X-ray fluorescence (pXRF) demonstrate that the slags are on average enriched in base metals (Cu 0.7 wt%, Pb 2.7 wt%, Zn 4.7 wt%), trace metals and metalloids (Cd approx. 50 mg/kg, Mo approx. 910 mg/kg) as well as critical elements (As approx. 6300 mg/kg, Bi approx. 3 mg/kg, Co approx. 200 mg/kg, Ga approx. 100 mg/kg, In approx. 9 mg/kg, Sb approx. 470 mg/kg). While metals and metalloids such as As, Mo and Pb can be determined reliably using pXRF instruments, the technique has inherent limitations in evaluating the contents of certain critical elements (Ga, Sb). However, there are positive correlations between the As, Mo, and Pb contents determined by pXRF and the Ga and Sb contents obtained through ICP-MS and XRF. Thus, quantitative pXRF analysis for As, Mo, and Pb allows calculation of Ga and Sb abundances in the slags. This work demonstrates that pXRF analysers are a valuable tool to screen smelting slags for their chemical composition and to predict the likely contents of critical elements. Keywords: base metal slag, portable XRF, critical elements, secondary resource.
Publisher
Academy of Science of South Africa
Subject
Materials Chemistry,Metals and Alloys,Geotechnical Engineering and Engineering Geology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献