Production of Al(HI)-K(I)-Ti(IV)-sulphate-containing leach liquor from metakaolinite-containing ash derived from South African coal fines

Author:

Collins A.C.,Strydom C.A.,Matjie R.H.,Bunt J.R.,van Dyk J.C.

Abstract

South African discard coal fines and K2CO3 blends were heated in a laboratory-scale rotary kiln to produce ashes for H2SO4 leaching tests. The optimized H2SO4 leaching conditions of 6.12 mol.dm3 (M) H2SO4, solid to liquid ratios 1:5 and 1:10, and 8o°C for 8 hours were used. K2CO3 was added to increase the dissolution efficiency of K. The objective was to determine if the Al present in metakaolinite (Al2O3.2SiO2), the Al, K, and Ti in the alumino-silicate glasses, and the Ti in rutile (TiO2) in the ashes could be selectively dissolved in H2SO4. XRF results show that the ashes formed at 700°C dissolved more efficiently (87% Al, 89% K and 23% Ti) compared to the ashes formed at 1050°C. This can be attributed to the presence of Al2O3.2SiO2, K2CO3 melt, K2CO3 remnants, KAl(SO4)2, and K-aluminosilicate glass in these ashes. XRD results indicate that the ashes prepared at 1050°C contained anorthite (CaAl^Og), microcline (KAlSi3O8), pseudomullite (Al2.SiO2), and silicon spinel (2Al2O3.3SiO2), which are either insoluble or only sparingly soluble in H2SO4. These minerals resulted in the lower dissolution efficiencies of Al and K. Based on the high dissolution efficiencies of Al and K for the ashes produced at 700°C, coal fines blended with K2CO3 could possibly be utilized as feedstocks for the production of aluminium(III), potassium(I), and titanium(IV) and a sulphate-containing leach liquor. Furthermore, the environmental issues and costs associated with the handling and disposal of large volumes of coal fines will also be resolved.

Publisher

Academy of Science of South Africa

Subject

Materials Chemistry,Metals and Alloys,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3