Models for predicting pseudothecium maturity and ascospore release of Phyllosticta spp. in South African citrus orchards

Author:

Moyo Providence1ORCID,du Raan Susan2,Fourie Paul H.13ORCID

Affiliation:

1. Citrus Research International, Nelspruit, South Africa

2. QMS Laboratories, Letsitele, South Africa

3. Department of Plant Pathology, Stellenbosch University, Stellenbosch, South Africa

Abstract

Ascosporic infection plays a major role in the epidemiology of citrus black spot (CBS) in South Africa, a disease caused by Phyllosticta citricarpa. Phyllosticta pseudothecium maturation and ascospore release models have been integrated in infection models to predict the availability of the primary inoculum source. However, these models have not been validated on a broader data set and this study aimed to validate and improve these epidemiological models. New pseudothecium maturation and ascospore release models for P. citricarpa were developed, based on weather and ascospore trap data from 13 locations and up to five seasons. From the 29 data sets analysed, 3775 3-hourly periods with ascospore events were recorded on 1798 days; 90% of these events occurred between 16.0 °C and 32.1 °C (daily Tmin and Tmax of 15.4 °C and 33.5 °C, respectively) and 75% occurred above a relative humidity (RH) of 55.9% (daily RH > 47.9%). Rain was recorded during 13.8% of these ascospore events and 20.0% of ascospore days. Using logistic regression, a Gompertz model that best predicted pseudothecium maturation, or the probability of onset of ascospore release, was developed and was markedly more accurate than the previously described models. The model consisted of DDtemp [cumulative degree-days from midwinter (1 July) calculated as (minimum + maximum daily temperature) / 2 – 10 °C] and DDwet (DDtemp accumulated only on days with >0.1 mm rain or vapour pressure deficit <5 hPa) as variables in the formula: probability of first ascospore event = exp(-exp(-(-3.131 + 0.007 × DDtemp - 0.007 × DDwet))). A Gompertz model [PAT = exp(-2.452 × exp(-0.004 × DDwet2))] was also developed for ascospore release; DDwet2 = DDtemp accumulated, from first seasonal ascospore trap day, only on days with >0.1 mm rain or vapour pressure deficit <5 hPa. Similar to the DDwet2 model described in a previous study, this model adequately predicted the general trend in ascospore release but poorly predicted periods of daily, 3-day and 7-day ascospore peaks.

Funder

Department of Science and Innovation, South Africa

Publisher

Academy of Science of South Africa

Subject

General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference38 articles.

1. Kiely TB. Preliminary studies on Guignardia citricarpa n. sp., the ascigerous stage of Phoma citricarpa McAlp., and its relation to blackspot of citrus. Proc Linn Soc NSW. 1948;73:249-292.

2. Kotzé JM. Black spot. In: Timmer LW, Garnsey SM, Graham JH. Compendium of citrus diseases. 2nd ed. St. Paul, MN: The American Phytopathological Society; 2000. p. 23-25.

3. McOnie KC. Orchard development and discharge of ascospores of Guignardia citricarpa and the onset of infection in relation to the control of citrus black spot. Phytopathology. 1964;54:1148-1453.

4. Kotzé JM. Epidemiology and control of citrus black spot in South Africa. Plant Dis. 1981;65:945-950. https://doi.org/10.1094/pd-65-945

5. Schutte GC, Mansfield RI, Smith H, Beeton KV. Application of azoxystrobin for control of benomyl-resistant Guignardia citricarpa on 'Valencia' oranges in South Africa. Plant Dis. 2003;87:784-788. https://doi.org/10.1094/pdis.2003.87.7.784

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3