Estimating lightning NOx production over South Africa

Author:

Maseko Bathobile1ORCID,Feig Gregor2ORCID,Burger Roelof3ORCID

Affiliation:

1. South African Weather Service, Pretoria, South Africa

2. South African Environmental Observation Network, Pretoria, South Africa

3. Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa

Abstract

Nitrogen oxides (NOx = NO + NO2) are toxic air pollutants and play a significant role in tropospheric chemistry. Global NOx hotspots are the industrialised regions of the USA, Europe, Middle East, East Asia and eastern parts of South Africa. Lightning is one of the many natural and anthropogenic sources of NOx to the troposphere. It plays a role in the formation of particulate matter and tropospheric ozone, which are both linked to harmful health and climate effects. The discourse on NOx over the southern African continent has mainly focused on anthropogenic sources. However, lightning is known to be a main source of tropospheric NOx globally. It is therefore important to understand its contribution to the national and global NOx budget. Data from the South African Lightning Detection Network were used to approximate the influence of lightning on the NOx load over the country, and to develop a gridded data set of lightning-produced NOx (LNOx) emissions for the period 2008 2015. The Network monitors cloud-toground lightning strikes; and theoretically has a detection efficiency of 90% and a location accuracy of 0.5 km. An emission factor of 11.5 kg NO2/flash was employed to calculate the LNOx budget of ~270 kt NO2/year. The calculated LNOx was 14% of the total NOx emission estimates published in the EDGAR v4.2 data set for the year 2008. The LNOx emission inventory will improve model performance and prediction, and enhance the understanding of the contribution of lightning to ambient NO2.

Publisher

Academy of Science of South Africa

Subject

General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference64 articles.

1. Monks PS, Archibald AT, Colette A, Cooper O, Coyle M, Derwent R, et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos Chem Phys. 2015;15(15):8889-8973. https://doi.org/10.5194/acp-15-8889-2015

2. National environmental management: Air quality act, Act 39 of 2004, Republic of South Africa.

3. South African Department of Environmental Affairs (DEA). Highveld priority area air quality management plan. Pretoria: DEA; 2011.

4. Venter AD, Vakkari V, Beukes JP, Van Zyl P, Laakso H, Mabaso D, et al. An air quality assessment in the industrialised western Bushveld Igneous Complex, South Africa. S Afr J Sci. 2012;108(9/10), Art. #1059. https://doi. org/10.4102/sajs.v108i9/10.1059

5. South African Department of Environmental Affairs (DEA). National framework for air quality management in the Republic of South Africa. Pretoria: Government Printers; 2013.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3