Mapping chlorophyll-a concentrations in a cyanobacteria- and algae-impacted Vaal Dam using Landsat 8 OLI data

Author:

Malahlela Oupa E.1ORCID,Oliphant Thando2,Tsoeleng Lesiba T.1,Mhangara Paidamwoyo1

Affiliation:

1. Research and Applications Development, Earth Observation Directorate, South African National Space Agency, Pretoria, South Africa

2. Data Products and Services, Earth Observation Directorate, South African National Space Agency, Pretoria, South Africa

Abstract

Mapping chlorophyll-a (chl-a) is crucial for water quality management in turbid and productive case II water bodies, which are largely influenced by suspended sediment and phytoplankton. Recent developments in remote sensing technology offer new avenues for water quality assessment and chl-a detection for inland water bodies. In this study, the red to near-infrared (NIR-red) bands were tested for the Vaal Dam in South Africa to classify chl-a concentrations using Landsat 8 Operational Land Imager (OLI) data for 2014–2016 by means of stepwise logistic regression (SLR). The moderate-resolution imaging spectroradiometer (MODIS) data were also used for validating chl-a concentration classes. The chl-a concentrations were classified into low and high concentrations. The SLR applied on 2014 images yielded an overall accuracy of 80% and kappa coefficient (κ) of 0.74 on April 2014 data, while an overall accuracy of 65% and κ=0.30 were obtained for the May 2015 Landsat data. There was a significant (p less than 0.05) negative correlation between chl-a classes and red band in all analyses, while the NIR band showed a positive correlation (0.0001; p less than 0.89) for April 2014 data set. The 2015 image classification yielded an overall accuracy of 83% and κ=0.43. The difference vegetation index showed a significant (p less than 0.003) positive correlation with chl-a concentrations for May 2015 and July 2016, with chl-a ranges of between 2.5 μg/L and 1219 μg/L. These correlations show that a class increase in chl-a (from low to high) is in response to an increase in greenness within the Vaal Dam. We have demonstrated the applicability of Landsat 8 OLI data for inland water quality assessment.

Publisher

Academy of Science of South Africa

Subject

General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3