Modelling water temperature in the lower Olifants River and the implications for climate change

Author:

Adlam Amanda L.ORCID,Chimimba Christian T.ORCID,Retief D.C. HugoORCID,Woodborne StephanORCID

Abstract

Freshwater systems in southern Africa are under threat of climate change, not only from altered flow regimes as rainfall patterns change, but also from biologically significant increases in water temperature. Statistical models can predict water temperatures from air temperatures, and air temperatures may rise by up to 7 °C by 2100. Statistical water temperature models require less data input than physical models, which is particularly useful in data deficient regions. We validated a statistical water temperature model in the lower Olifants River, South Africa, and verified its spatial applicability in the upper Klaserie River. Monthly and daily temporal scale calibrations and validations were conducted. The results show that simulated water temperatures in all cases closely mimicked those of the observed data for both temporal resolutions and across sites (NSE>0.75 for the Olifants River and NSE>0.8 for the Klaserie). Overall, the model performed better at a monthly than a daily scale, while generally underestimating from the observed (indicated by negative percentage bias values). The statistical models can be used to predict water temperature variance using air temperature and this use can have implications for future climate projections and the effects climate change will have on aquatic species. Significance: Statistical modelling can be used to simulate water temperature variance from observed air temperature, which has implications for future projections and climate change scenarios. While there are many other factors affecting water temperature, air temperature accounts for up to 95% of water temperature variance. The model used can successfully simulate water temperature variance for different rivers.

Funder

National Research Foundation

Publisher

Academy of Science of South Africa

Subject

General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3