Abstract
We review the conversion of waste biomass into recyclable materials using different methods of materials treatment such as thermal, mechanical and chemical processes. Renewable and sustainable biomaterials are increasingly becoming alternatives for synthetic strong materials, e.g. composites. The type of treatment of biomaterial will determine the form to which the biomass is converted and its subsequent applications. It is anticipated that the transformation will produce materials that have superior qualities, properties and characteristics. These include biopolymer materials such as cellulose and hemicellulose, which have all been obtained as products of treatment and extraction from plant materials such as lignocellulose. The main reason for inefficient biomass conversion has been found to be poor manipulation of composite properties during biomass treatment process. The treatment processes are expected to facilitate dehydration, dehydrogenation, deoxygenation and decarboxylation of the bulk biomass materials to target the formation of new compounds that may be used to make strong materials.
Significance:
This work demonstrates that plant material, as a solid-state biomass material for strong structural applications such as in biocomposites, is affected by factors that include the alignment of fibres, orientation of fibres, and mass density distribution. However, biocomposite materials have been found to be non-toxic, corrosionresistant, low-cost, and renewable. They are preferred because the materials possess high thermal stability, are biodegradable and recyclable, and have high biocompatibility, performance, strength, water-resistance, specific surface area and aspect ratio to qualify them for applications including biobricks for construction, slabs for paving, vehicle internal components, ultra-high temperature aerospace ceramics, and energy storage devices.
Publisher
Academy of Science of South Africa
Subject
General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Reference68 articles.
1. 1. Organisation for Economic Co-operation and Development (OECD). Towards a more resource-efficient and circular economy: The role of the G20. Paris: OECD; 2021. Available from: https://www.oecd.org/env/waste/OECD-G20- Towards-a-more-Resource-Efficient-and-Circular-Economy
2. 2. Jørgensen H, Tjalfe S, Schjoerring JK. The potential for biorefining of triticale to protein and sugar depends on nitrogen supply and harvest time. Ind Crops Prod. 2020;149, Art. #112333. https://doi.org/10.1016/j.indcrop.2020.112333
3. 3. Danubia (Pty). Tyre Waste Abatement and Minimisation Initiative of South Africa (TWAMISA). National Environmental Management Waste Act, 2018 amendment.
4. 4. Godfrey L, Rivers M, Jindal N. A National Waste R&D and Innovation Roadmap for South Africa: Phase 2 Waste RDI Roadmap. Trends in waste management and priority waste streams for the Waste RDI Roadmap. Pretoria: Department of Science and Technology; 2014. Available from: https://wasteroadmap. co.za/wp-content/uploads/2020/03/trends_in_waste_management.pdf
5. 5. Philp J, Winickoff D. Innovation ecosystems in the bioeconomy. OECD Science, Technology and Industry Policy Papers no. 76. Paris: OECD Publishing; 2019. https://doi.org/10.1787/e2e3d8a1-en
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献