Multifunctional Hydrogels Based on γ-Polyglutamic Acid/Polyethyleneimine for Hemostasis and Wound Healing

Author:

Li Xiuyun1,Han Wenli23,Zhang Yilin1,Tan Dongmei1,Cui Min1,Wang Shige2ORCID,Shi Wenna3

Affiliation:

1. Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, Shandong Province, P. R. China.

2. School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.

3. Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, P. R. China.

Abstract

Current hemostatic materials have many shortcomings, such as biotoxicity or poor degradability, and do not effectively promote wound healing after hemostasis. To address these limitations, a hemostasis-promoting wound-healing hydrogel, polyglutamic acid/polyethyleneimine/montmorillonite (PPM), comprising polyglutamic acid, 3,4-dihydroxybenzaldehyde-modified polyethyleneimine, and amino-modified montmorillonite (montmorillonite-NH 2 ) was constructed in this study. Due to the excellent water absorption abilities of γ-polyglutamic acid, the PPM and polyglutamic acid/polyethyleneimine hydrogels could rapidly absorb the blood and tissue fluid exuded from the wound to keep the wound clean and accelerate the blood coagulation. The homogeneous distribution of montmorillonite-NH 2 enhanced not only the mechanical properties of the hydrogel but also its hemostatic properties. In addition, the modification of polyethylenimine with 3,4-dihydroxybenzaldehyde provided anti-inflammatory effects and endorsed the wound healing. Cellular and blood safety experiments demonstrated the biocompatibility of the PPM hydrogel, and animal studies demonstrated that the PPM hydrogel effectively stopped bleeding and promoted wound healing. The concept design of clay-based hydrogel may create diverse opportunities for constructing hemostasis and wound-healing dressings.

Funder

Shandong Provincial Natural Science Foundation

Medical and Health Science and Technology Development Project of Shandong Province

Traditional Chinese Medicine Science and Technology Project of Shandong Province

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3