Nondestructive 3D Image Analysis Pipeline to Extract Rice Grain Traits Using X-Ray Computed Tomography

Author:

Hu Weijuan12,Zhang Can13,Jiang Yuqiang12,Huang Chenglong14,Liu Qian13,Xiong Lizhong14ORCID,Yang Wanneng14ORCID,Chen Fan12ORCID

Affiliation:

1. Crop Phenomics Joint Research Center, Wuhan 430070, China

2. Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing 100101, China

3. Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, and Key Laboratory of Ministry of Education for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

4. National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Agricultural Bioinformatics Key Laboratory of Hubei Province, and College of Engineering, Huazhong Agricultural University, Wuhan 430070, China

Abstract

The traits of rice panicles play important roles in yield assessment, variety classification, rice breeding, and cultivation management. Most traditional grain phenotyping methods require threshing and thus are time-consuming and labor-intensive; moreover, these methods cannot obtain 3D grain traits. In this work, based on X-ray computed tomography, we proposed an image analysis method to extract twenty-two 3D grain traits. After 104 samples were tested, the R2 values between the extracted and manual measurements of the grain number and grain length were 0.980 and 0.960, respectively. We also found a high correlation between the total grain volume and weight. In addition, the extracted 3D grain traits were used to classify the rice varieties, and the support vector machine classifier had a higher recognition accuracy than the stepwise discriminant analysis and random forest classifiers. In conclusion, we developed a 3D image analysis pipeline to extract rice grain traits using X-ray computed tomography that can provide more 3D grain information and could benefit future research on rice functional genomics and rice breeding.

Funder

Fundamental Research Funds for the Central Universities

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3