Engineering Epitaxial Silicene on Functional Substrates for Nanotechnology

Author:

Grazianetti Carlo1ORCID,Molle Alessandro1

Affiliation:

1. CNR-IMM Unit of Agrate Brianza, Via C. Olivetti 2, Agrate Brianza I-20864, Italy

Abstract

Two-dimensional materials are today a solid reality in condensed matter physics due to the disruptive discoveries about graphene. The class of the X-enes, namely, graphene-like single element artificial crystals, is quickly emerging driven by the high-momentum generated by silicene. Silicene, in addition to the graphene properties, shows up incidentally at the end of Moore’s law debate in the electronic era. Indeed, silicene occurs as the crafted shrunk version of silicon long yearned by device manufacturers to improve the performances of their chips. Despite the periodic table kinship with graphene, silicene and the X-enes must deal with the twofold problem of their metastable nature, i.e., the stabilization on a substrate and out of vacuum environment. Synthesis on different substrates and deep characterization through electronic and optical techniques of silicene in the early days have been now following by the tentative steps towards reliable integration of silicene into devices. Here, we review three paradigmatic cases of silicene grown by molecular beam epitaxy showing three different possible applications, aiming at extending the exploitation of silicene out of the nanoelectronics field and thus keeping silicon a key player in nanotechnology, just in a thinner fashion.

Funder

Fondazione CARIPLO–Regione Lombardia

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3