Factors Modulating the Variability of Eddy Kinetic Energy in the Southern Ocean from Idealized Simulations

Author:

Cai Yongqing1ORCID,Chen Dake23,Chen Ru4,Lei Ruibo1,Wu Lichuan5

Affiliation:

1. Key Laboratory for Polar Science of the Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China.

2. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.

3. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.

4. School of Marine Science and Technology, Tianjin University, Tianjin, China.

5. Department of Earth Sciences, Uppsala University, Uppsala, Sweden.

Abstract

The Southern Ocean is characterized by high levels of eddy activity, which are crucial for the vertical exchange or transfer of matter, energy, and momentum. Previous studies have shown that the variability of eddy kinetic energy (EKE) in the Southern Ocean is primarily intrinsic. However, the factors that modulate the forced and intrinsic variability of the EKE remain unclear. In this study, we conduct a series of idealized simulations and apply ensemble analysis to investigate the impact of topography and wind-stress perturbations on the forced and intrinsic variability of the EKE and their relative contributions. The results show that while the large wind-stress perturbation obviously increases the forced variability of EKE by enhancing the Ekman response, the topography not only amplifies the forced variability by sharpening isopycnals and energizing the mean flow but also intensifies the intrinsic variability of EKE. However, EKE variabilities in both complex-topographic and flat-bottom cases are dominated by their intrinsic components, even when driven by escalated wind-stress perturbations. These findings deepen our understanding of the eddy field, its ongoing variability in the Southern Ocean, and its potential impact on the balance of heat, carbon, and freshwater.

Funder

National Natural Science Foundation of China

Vetenskapsrådet

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3