Eelgrass and Macroalgae Loss in an Oregon Estuary: Consequences for Ocean Acidification and Hypoxia

Author:

Magel Caitlin L.1ORCID,Hacker Sally D.1ORCID,Chan Francis1ORCID,Helms Alicia R.2

Affiliation:

1. Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA.

2. South Slough National Estuarine Research Reserve, Charleston, OR 97420, USA.

Abstract

Estuarine macrophytes are proposed to influence ocean acidification and hypoxia (OAH) via the uptake (release) of inorganic carbon (oxygen) during photosynthesis. The extent to which macrophytes mitigate OAH in estuaries depends on the interaction between variable environmental conditions and macrophyte production over space and time. To explore these complexities in detail, we considered the potential causes and consequences of intertidal eelgrass and macroalgae declines in a U.S. Pacific Northwest estuary. We compiled and analyzed a record of eelgrass ( Zostera marina ) and ulvoid macroalgae along with a broad suite of environmental conditions over 15 years (2004 to 2019) at 3 sites along an estuarine gradient in South Slough, Oregon. The analysis showed that declining macrophyte biomass coincided with increasing temperature (water and air), watershed disturbance, and possibly turbidity. Coincident with macrophyte loss, diel dissolved oxygen (DO) and pH variability were reduced, indicating an influence of macrophytes on water quality at an ecosystem scale. Eelgrass loss was correlated with declining gross production and respiration, which altered the diel dynamics of pH, DO, and partial pressure of carbon dioxide at some sites. Under certain conditions, there was an association between eelgrass biomass and changes in DO and pH of more than 2 mg/l and 0.3 units, respectively. We found that daytime amelioration of low DO and pH was possible at certain locations when macrophyte biomass (especially eelgrass) was high. However, our analyses suggested that the efficacy of macrophyte mitigation of OAH depends on macrophyte abundance and the volume and residence time of overlying water.

Publisher

American Association for the Advancement of Science (AAAS)

Reference113 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3