Microbially Driven Sulfur Cycling in the River–Wetland–Ocean Continuum

Author:

Yu Xiaoli1ORCID,Hu Ruiwen12ORCID,Tao Mei1ORCID,Qian Lu1ORCID,Wang Faming3ORCID,Wang Shanquan1ORCID,Niu Mingyang1ORCID,Yan Qingyun1ORCID,He Zhili1ORCID

Affiliation:

1. Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.

2. Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

3. Xiaoliang Research Station for Tropical Coastal Ecosystems and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.

Abstract

Sulfur (S) is an essential biological element, and S cycling is mainly driven by metabolically versatile microorganisms. The river–wetland–ocean (RWO) continuum here is defined as the dynamically connected region with estuary, wetland, and near-marine ecosystems, and it is considered a hotspot of biogeochemical cycling, especially a major biotope for S cycling. Various forms and oxidation states of S compounds are considered ideal electron donors or acceptors and are widely utilized by microorganisms via inorganic or organic S-cycling processes. The S-cycling pathways are intimately linked to the carbon (C), nitrogen, phosphorus, and metal cycles, playing crucial roles in biogeochemical cycling, C sequestration, and greenhouse gas emissions through various mechanisms in the RWO continuum. This review provides a comprehensive understanding of microbially driven S cycling in the RWO continuum. We first illustrate the importance of S cycling in this continuum, including key microorganisms and functional processes (e.g., dissimilatory sulfate reduction, S oxidation, dimethylsulfoniopropionate production, and catabolism) as well as their corresponding S flux characteristics. In particular, we emphasize recent advances in the coupling mechanisms of the S cycle with other major element cycles. We further propose important perspectives for developing microbiome engineering of S-cycling microbial communities via integration of current knowledge about the multidimensional diversity, cultivation, evolution, and interaction of S-cycling microorganisms and their coupling mechanisms in the RWO continuum, providing a new window on applying microbiome-based biotechnologies to overcome global climate challenges.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3