Terrestrial Net Ecosystem Productivity in China during 1900–2100

Author:

Liu Jianzhao12,Yuan Fenghui13ORCID,Chen Ning1,Wang Nannan1,Zuo Yunjiang1,Li Kexin1,Guo Ziyu1,Zhu Xinhao4,Sun Ying1,Zhang Lihua5,Guo Yuedong1,Xu Xiaofeng4,Song Changchun1

Affiliation:

1. Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.

2. College of Surveying and Exploration Engineering, Jilin Jianzhu University, Changchun 130018, China.

3. Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN 55108, USA.

4. Biology Department, San Diego State University, San Diego, CA 92182, USA.

5. College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.

Abstract

Terrestrial ecosystems are a critical carbon dioxide (CO 2 ) sink for achieving carbon (C) neutrality before 2060 in China. Here, we used the Coupled Model Intercomparison Project phase 6 (CMIP6) model outputs to quantify the spatiotemporal patterns of net ecosystem productivity (NEP) and its major environmental controls, as well as the dominant C pools for NEP during 1900–2100. We found that (a) according to CMIP6 NEP spatiotemporal characteristics, terrestrial ecosystems in China sequestered 0.310 ± 0.058 Pg C·year –1 during 1980–2014 and will act as a strong C sink [from 0.515 ± 0.075 Pg C·year –1 under Shared Socioeconomic Pathway 126 (SSP126) to 0.631 ± 0.089 Pg C·year –1 under SSP585] in the future (2015–2100). Pronounced turning points were found for the temporal trends of NEP during the historical (1984) and under 4 future emissions scenarios (2057 for SSP126, 2053 for SSP245, 2038 for SSP370, and 2044 for SSP585). (b) The positive effect of temperature on NEP appears to weaken after each turning point of future scenarios. (c) The enlarged vegetation C pool size dominates the growing terrestrial ecosystem C storage. The CMIP6 projection shows that the total C storage in Chinese terrestrial ecosystems increases continuously and peaks in the 2040s to 2050s under each scenario. Future afforestation in the northeast, southeast, and southwestern regions, as well as soil C pool management in the northwest and middle north regions, will greatly contribute to achieving C neutrality in China, particularly under low emission scenario (SSP126).

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Management, Monitoring, Policy and Law,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3