Flexibility of Metal-Organic Framework Tunable by Crystal Size at the Micrometer to Submillimeter Scale for Efficient Xylene Isomer Separation

Author:

Yang Xiao1,Zhou Hao-Long1ORCID,He Chun-Ting1,Mo Zong-Wen1,Ye Jia-Wen1,Chen Xiao-Ming1,Zhang Jie-Peng1ORCID

Affiliation:

1. MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China

Abstract

Understanding, controlling, and utilizing the flexibility of adsorbents are of great importance and difficulty. Analogous with conventional solid materials, downsizing to the nanoscale is emerging as a possible strategy for controlling the flexibility of porous coordination polymers (or metal-organic frameworks). We report a unique flexibility controllable by crystal size at the micrometer to submillimeter scale. Template removal transforms [Cu2(pypz)2]·0.5p-xylene (MAF-36, Hpypz = 4-(1H-pyrazol-4-yl)pyridine) with one-dimensional channels to α-[Cu2(pypz)2] with discrete small cavities, and further heating gives a nonporous isomer β-[Cu2(pypz)2]. Both isomers can adsorb p-xylene to give [Cu2(pypz)2]·0.5p-xylene, meaning the coexistence of guest-driven flexibility and shape-memory behavior. The phase transition temperature from α-[Cu2(pypz)2] to β-[Cu2(pypz)2] decreased from ~270°C to ~150°C by increasing the crystal size from the micrometer to the submillimeter scale, ca. 2-3 orders larger than those of other size-dependent behaviors. Single-crystal X-ray diffraction showed coordination bond reconstitution and chirality inversion mechanisms for the phase transition, which provides a sufficiently high energy barrier to stabilize the metastable phase without the need of downsizing to the nanoscale. By virtue of the crystalline molecular imprinting and gate-opening effects, α-[Cu2(pypz)2] and β-[Cu2(pypz)2] show unprecedentedly high p-xylene selectivities of 16 and 51, respectively, as well as ultrafast adsorption kinetics (<2 minutes), for xylene isomers.

Funder

Guangdong Pearl River Talents Program

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3