Convolutional Neural Networks for Image-Based High-Throughput Plant Phenotyping: A Review

Author:

Jiang Yu123ORCID,Li Changying23

Affiliation:

1. Horticulture Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, USA

2. School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, USA

3. Phenomics and Plant Robotics Center, The University of Georgia, USA

Abstract

Plant phenotyping has been recognized as a bottleneck for improving the efficiency of breeding programs, understanding plant-environment interactions, and managing agricultural systems. In the past five years, imaging approaches have shown great potential for high-throughput plant phenotyping, resulting in more attention paid to imaging-based plant phenotyping. With this increased amount of image data, it has become urgent to develop robust analytical tools that can extract phenotypic traits accurately and rapidly. The goal of this review is to provide a comprehensive overview of the latest studies using deep convolutional neural networks (CNNs) in plant phenotyping applications. We specifically review the use of various CNN architecture for plant stress evaluation, plant development, and postharvest quality assessment. We systematically organize the studies based on technical developments resulting from imaging classification, object detection, and image segmentation, thereby identifying state-of-the-art solutions for certain phenotyping applications. Finally, we provide several directions for future research in the use of CNN architecture for plant phenotyping purposes.

Funder

National Robotics Initiative

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Literature and Literary Theory,Music,Agronomy and Crop Science,Conservation

Cited by 182 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3