Freeform Illuminator for Computational Microscopy

Author:

Song Pengming1,Wang Tianbo1,Jiang Shaowei1,Guo Chengfei12,Wang Ruihai1,Yang Liming1,Zhou You3,Zheng Guoan1

Affiliation:

1. Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.

2. Advanced Optoelectronic Imaging and Device Laboratory, Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China.

3. School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China.

Abstract

Programmable illumination control is essential for many computational microscopy techniques. Conventional light source array is often arranged on a fixed grid of a planar surface for providing programmable sample illumination. Here, we report the development of a freeform illuminator that can be arranged at arbitrary 2-dimensional or 3-dimensional (3D) surface structures for computational microscopy. The freeform illuminator can be designed in a small form factor with a dense light source arrangement in 3D. It can be placed closer to the sample for providing angle-varied illumination with higher optical flux and smaller angular increment. With the freeform illuminators, we develop a calibration process using a low-cost Raspberry-Pi image sensor coated with a monolayer of blood cells. By tracking the positional shift of the blood-cell diffraction patterns at 2 distinct regions of the coded sensor, we can infer the 3D positions of the light source elements in a way similar to the stereo vision reconstruction approach. To demonstrate the applications for computational microscopy, we validate the freeform illuminators for Fourier ptychographic microscopy, 3D tomographic imaging, and on-chip microscopy. We also present a longitudinal study by tracking the growth of live bacterial cultures over a large field of view. The reported freeform illuminators and the related calibration process offer flexibilities and extended scope for imaging innovations in computational microscopy.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3