Quantum Dynamic Mode Decomposition Algorithm for High-Dimensional Time Series Analysis

Author:

Xue Cheng1ORCID,Chen Zhao-Yun1,Sun Tai-Ping234,Xu Xiao-Fan234,Chen Si-Ming234,Liu Huan-Yu234,Zhuang Xi-Ning234,Wu Yu-Chun234,Guo Guo-Ping12345

Affiliation:

1. Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui 230026, P. R. China.

2. CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.

3. CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.

4. Hefei National Laboratory, Hefei, Anhui 230088, P. R. China.

5. Origin Quantum Computing Company Limited, Hefei, Anhui 230026, P. R. China.

Abstract

The dynamic mode decomposition (DMD) algorithm is a widely used factorization and dimensionality reduction technique in time series analysis. When analyzing high-dimensional time series, the DMD algorithm requires extremely large amounts of computational power. To accelerate the DMD algorithm, we propose a quantum-classical hybrid algorithm that we call the quantum dynamic mode decomposition (QDMD) algorithm. Given a time series X  ∈  R n  × ( m  + 1) with n  ≫  m , the QDMD algorithm first executes quantum singular value decomposition on a matrix related to X and obtains a quantum state containing the main singular values and singular vectors of the decomposed matrix, then performs a low-sampling-frequency process on the obtained quantum state and computes the low-dimensional projection of the DMD operator through the sampling results. Finally, the algorithm computes the DMD eigenvalues and prepares the amplitude-encoding states of the DMD modes using the obtained classical information and X . Considering the main variables, the complexity of the QDMD algorithm is O ~ M m polylog n / ϵ , where M = O ~ m 3 / ϵ 2 denotes the number of samples. Compared with the classical DMD algorithm, which has complexity O ~ n m 2 log 1 / ϵ , the QDMD algorithm provides an exponential acceleration of n , at the cost of greater dependence on M and ϵ . We test the effects of M on the QDMD algorithm in the specific application scenarios of data denoising, scene background extraction, and fluid dynamics analysis. We determined that the QDMD algorithm requires only a small number of samples M in specific applications, further demonstrating the quantum advantage of the QDMD algorithm in high-dimensional data analysis.

Publisher

American Association for the Advancement of Science (AAAS)

Reference68 articles.

1. Quantum principal component analysis

2. Quantum algorithm for association rules mining;Yu CH;Phys Rev A,2016

3. Recent advances for quantum classifiers;Li W;Sci Chin Phys, Mechan Astron,2021

4. Tomography and generative training with quantum boltzmann machines;Kieferová M;Phys Rev A,2017

5. Quantum boltzmann machine;Amin MH;Phys Rev X,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reduced-order modeling on a near-term quantum computer;Journal of Computational Physics;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3