Largely Suppressed Magneto-Thermal Conductivity and Enhanced Magneto-Thermoelectric Properties in PtSn4

Author:

Fu Chenguang1ORCID,Guin Satya N.1,Scaffidi Thomas23ORCID,Sun Yan1,Saha Rana4ORCID,Watzman Sarah J.5ORCID,Srivastava Abhay K.46ORCID,Li Guowei1,Schnelle Walter1,Parkin Stuart S. P.4,Felser Claudia1ORCID,Gooth Johannes1ORCID

Affiliation:

1. Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany

2. Department of Physics, University of California, Berkeley, CA 94720, USA

3. Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada

4. Max Planck Institute of Microstructure Physics, 06120 Halle, Germany

5. Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45219, USA

6. Institute of Physics, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany

Abstract

Highly conductive topological semimetals with exotic electronic structures offer fertile ground for the investigation of the electrical and thermal transport behavior of quasiparticles. Here, we find that the layer-structured Dirac semimetal PtSn4 exhibits a largely suppressed thermal conductivity under a magnetic field. At low temperatures, a dramatic decrease in the thermal conductivity of PtSn4 by more than two orders of magnitude is obtained at 9 T. Moreover, PtSn4 shows both strong longitudinal and transverse thermoelectric responses under a magnetic field. Large power factor and Nernst power factor of approximately 80–100 μW·cm-1·K-2 are obtained around 15 K in various magnetic fields. As a result, the thermoelectric figure of merit zT is strongly enhanced by more than 30 times, compared to that without a magnetic field. This work provides a paradigm for the decoupling of the electron and hole transport behavior of highly conductive topological semimetals and is helpful for developing topological semimetals for thermoelectric energy conversion.

Funder

The Netherlands Organization for Science NWO

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3