Lunar Evolution Analysis Based on Numerical Simulations of Typical Lunar Impact Craters

Author:

Yue Zongyu12,Li Huacheng13,Zhang Nan3,Gou Sheng1,Lin Yangting1

Affiliation:

1. Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.

2. CAS Center for Excellence in Comparative Planetology, Hefei 230026, China.

3. School of Earth and Space Sciences, Peking University, Beijing 100871, China.

Abstract

Impact craters are one of the most important landforms on the lunar surface, playing a crucial role in the formation and later evolution of the Moon. For example, as a primary source of remote sensing observations and lunar samples, lunar regolith is predominantly composed of impact ejecta. Based on their morphologies, lunar impact craters with increasing sizes can be classified into simple craters, complex craters, and multiring basins, and they play different roles in lunar evolution. In our study, we conducted numerical simulations of the South Pole-Aitken basin and the Orientale basin on the lunar surface, as well as the Aristarchus complex crater and the Zhinyu simple crater. The resultant effects of them are further analyzed. Because Zhinyu crater is relatively close to the Chang’e-4 landing site, while Aristarchus crater is relatively close to the Chang’e-5 landing site, their simulation results have direct significance for interpreting the corresponding exploration data from both missions. The numerical simulation results demonstrate that the formation of large basins not only affects the subsurface structure within the basin but also significantly disturbs the surrounding geological layers. Complex and simple craters mainly disturb the subsurface layers within the crater, but complex craters can cause uplift of the underlying strata. These impact processes dominate the primary geological framework of the lunar surface, depositing ejecta materials of varying thicknesses from different depths, which has important implications for future sample collection missions. In conclusion, impact processes are one of the primary driving forces in the lunar evolution.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3