De Novo Design and Synthesis of Polypeptide Immunomodulators for Resetting Macrophage Polarization

Author:

Kong Na1,Ma Hongru23,Pu Zhongji23,Wan Fengju1,Li Dongfang2,Huang Lei23,Lian Jiazhang23,Huang Xingxu45,Ling Shengjie16,Yu Haoran23,Yao Yuan123

Affiliation:

1. School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.

2. ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.

3. College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.

4. Zhejiang Lab, Hangzhou, Zhejiang 311121, China.

5. School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.

6. Shanghai Clinical Research and Trial Center, Shanghai 201210, China.

Abstract

Modulating the extracellular matrix microenvironment is critical for achieving the desired macrophage phenotype in immune investigations or tumor therapy. Combining de novo protein design and biosynthesis techniques, herein, we designed a biomimetic polypeptide self-assembled nano-immunomodulator to trigger the activation of a specific macrophage phenotype. It was intended to be made up of (​GGS​GGP​GGG​PAS​AAA​NSA​SRA​TSN​SP) n , the RGD motif from collagen, and the IKVAV motif from laminin. The combination of these domains allows the biomimetic polypeptide to assemble into extracellular matrix-like nanofibrils, creating an extracellular matrix-like milieu for macrophages. Furthermore, changing the concentration further provides a facile route to fine-tune macrophage polarization, which enhances antitumor immune responses by precisely resetting tumor-associated macrophage immune responses into an M1-like phenotype, which is generally considered to be tumor-killing macrophages, primarily antitumor, and immune-promoting. Unlike metal or synthetic polymer-based nanoparticles, this polypeptide-based nanomaterial exhibits excellent biocompatibility, high efficacy, and precise tunability in immunomodulatory effectiveness. These encouraging findings motivate us to continue our research into cancer immunotherapy applications in the future.

Funder

National Natural Science Foundation of China

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Cell Biology,Agricultural and Biological Sciences (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3