Aggregation Regulated Ultrafast Singlet Fission Pathways in TIPS-Pentacene Films

Author:

Huang Guang1,Li Junzi2,Zhou Zilin1,Huang Zongtao1,Kong Wei1,Zhang Fangteng1,Zeng Youjun1,Liu Guanyu1,He Tingchao2,Ma Lin1ORCID

Affiliation:

1. School of Physics and Optoelectronic Engineering, Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China

2. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

Abstract

Singlet fission (SF) is a spin-conserving process converting 1 singlet exciton into 2 triplet excitons. This exciton multiplication mechanism offers an attractive route to solar cells that circumvent the single-junction Shockley–Queisser limit. However, it remains unclear how intermolecular coupling, which is subject to the aggregation extent in thin-film morphology, controls SF pathways and dynamics. The prototype molecule 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) has been extensively studied to investigate SF mechanisms. However, previous literature reports have presented divergent SF mechanisms and pathways in TIPS-pentacene films. In this study, solvent vapor annealing treatment is used to deliberately adjust the aggregation extent in TIPS-pentacene films. This enables us to reproduce various SF pathways reported in the literature under the same experimental conditions, with the only variation being the level of aggregation. These results shed light on the crucial role that molecular aggregation plays in modulating both the SF mechanism and pathway and reconciles the previously contentious SF mechanisms and pathways reported in TIPS-pentacene films. Our study offers substantial insights into the understanding of the SF mechanism and provides a potential avenue for future control of SF pathways in accordance with specific application requirements.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3