Neural Correlates of Motor/Tactile Imagery and Tactile Sensation in a BCI paradigm: A High-Density EEG Source Imaging Study

Author:

Wen Huan123,Zhong Yucun123,Yao Lin12345ORCID,Wang Yueming346

Affiliation:

1. The Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China.

2. The Nanhu Brain-Computer Interface Institute, Hangzhou, China.

3. The MOE Frontiers Science Center for Brain and Brain-Machine Integration, Zhejiang University, Hangzhou, China.

4. The College of Computer Science, Zhejiang University, Hangzhou, China.

5. The College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.

6. The Qiushi Academy for Advanced Studies, Hangzhou, China.

Abstract

Complementary to brain–computer interface (BCI) based on motor imagery (MI) task, sensory imagery (SI) task provides a way for BCI construction using brain activity from somatosensory cortex. The underlying neurophysiological correlation between SI and MI was unclear and difficult to measure through behavior recording. In this study, we investigated the underlying neurodynamic of motor/tactile imagery and tactile sensation tasks through a high-density electroencephalogram (EEG) recording, and EEG source imaging was used to systematically explore the cortical activation differences and correlations between the tasks. In the experiment, participants were instructed to perform the left and right hand tasks in MI paradigm, sensory stimulation (SS) paradigm and SI paradigm. The statistical results demonstrated that the imagined MI and SI tasks differed from each other within ipsilateral sensorimotor scouts, frontal and right temporal areas in α bands, whereas real SS and imagined SI showed a similar activation pattern. The similarity between SS and SI may provide a way to train the BCI system, while the difference between MI and SI may provide a way to integrate the discriminative information between them to enhance BCI performance. The combination of the tasks and its underlying neurodynamic would provide a new approach for BCI designation for a wider application. BCI studies concentrate on the hybrid decoding method combining MI or SI with SS, but the underlining neurophysiological correlates between them were unclear. MI and SI differed from each other within the ipsilateral sensorimotor cortex in alpha bands. This is a first study to investigate the neurophysiological relationship between MI and SI through an EEG source imaging approach from high-density EEG recording.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3