Double-Modal Locomotion of a Hydrogel Ultra-Soft Magnetic Miniature Robot with Switchable Forms

Author:

Zhong Shihao1,Xin Zhengyuan1,Hou Yaozhen1,Li Yang2,Huang Hen-Wei3,Sun Tao4,Shi Qing4,Wang Huaping5ORCID

Affiliation:

1. Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.

2. Peking University First Hospital, Beijing 100034, China.

3. Laboratory for Translational Engineering, Harvard Medical School, Cambridge, MA 02139, USA.

4. Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China.

5. Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China.

Abstract

Flexible miniature robots are expected to enter difficult-to-reach areas in vivo to carry out targeted operations, attracting widespread attention. However, it is challenging for the existing soft miniature robots to substantially alter their stable shape once the structure is designed. This limitation leads to a fixed motion mode, which subsequently restricts their operating environment. In this study, we designed a biocompatible flexible miniature robot with a variable stable form that is capable of adapting to complex terrain environments through multiple movement modes. Inspired by the reversible stretching reaction of alginate saline gel stimulated by changes in environmental ion concentration, we manufactured a morphologically changeable super-soft hydrogel miniature robot body. According to the stretch and contraction shapes of the flexible hydrogel miniature robot, we designed magnetic fields for swing and rolling motion modes to realize multi-shape movement. The experimental results demonstrate that the deflection angle of the designed flexible miniature robot is reversible and can reach a maximum of 180°. The flexible miniature robot can complete forward swinging in the bar stretch state and tumbling motion in the spherical state. We anticipate that flexible hydrogel miniature robots with multiple morphologies and multimodal motion have great potential for biomedical applications in complex, unstructured, and enclosed living environments.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Applied Mathematics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3